Superconducting Antenna Concept for Gravitational Wave Radiation

A. Gulian^a (*Presenter*), J. Foreman^b, V. Nikoghosyan^{a,c}, S. Nussinov^{a,d}, L. Sica^a, J. Tollaksen^a

 ^aChapman University, Schmid School for Science and Technology, Orange, CA & Burtonsville, MD
 ^bIndependent Researcher, Alexandria, VA
 ^cInstitute for Physics Research, National Academy of Sciences, Ashtarak, 0203, Armenia
 ^dSchool of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel

ITAR Disclaimer:

This presentation does not contain technical data per 22 CFR 120.10-distribution unrestricted w/o 3282.

NASA Workshop on Gravitational Wave Mission Architectural Concepts, Linthicum Heights, Dec. 21, 2011

Executive Summary

- •A novel concept of superconducting GW antenna.
- •Non-resonant, applicable to wide spectrum of sources.
- •Highly sensitive: $h_0 \sim 10^{-26}$ at 10²Hz; $h_0 \sim 10^{-23}$ at 10² mHz.
- •Moderate volume: 10 m lateral size.
- •Passive cooling below critical temperature of superconducting components far from the Sun.
- •Very little energy consumption at operation.
- •Easy to orient.
- •Virtually unrestricted operational time.

Starting Point

g

Next Step: Closing Current Trajectory

This design breaks Coulomb blockade: during two half-periods electrons will now move clockwise and counterclockwise

Why superconductivity?

Why Superconductivity

Motion of electrons in <u>semiconductors</u> and <u>normal metals</u>, though sometimes called "free", is Aristotelian: it persists while the force is acting. Ohms law: j~v~eE~F, <u>v~F</u>, *i.e.*, velocity in response to force In <u>superconductors</u> dv/dt~E, *i.e.*, motion is Newtonian!

This difference has crucial consequences: in S/C current response is greater by a factor $(\omega \tau)^{-1} \sim 10^{10+}$.

Ten or more orders of magnitude more than justify SC.

Price to pay: no negative masses for SC. Cooper pairs have positive mass.

NASA Workshop on Gravitational Wave Mission Architectural Concepts, Linthicum Heights, Dec. 21, 2011

Next Step Forward

What if $m_{eff}^{A} > m_{eff}^{B} > 0$? Tidal force is $\sim m_{0}$. Acceleration $\sim m_{eff}^{-1}$. Torque $\sim n^{A(B)}$, density of carriers.

Subject to electroneutrality (which imposes $n_A v_A = n_B v_B$, at *S*=const), the electric current is:

$$I = jS = en_S^A v_A S = e(n_S^A - n_S^B) \frac{m_0}{m_{eff}^A + m_{eff}^B} \frac{LS\omega h}{8}$$

Here L –side length of antenna, S is its cross section.

NASA Workshop on Gravitational Wave Mission Architectural Concepts, Linthicum Heights, Dec. 21, 2011

Estimates of Antenna Response

At $L=10^3 cm$, $S=10^2 cm^2$ the resultant current is about femtoampere for a wave with amplitude $h_0=10^{-26}$ and frequency 100 Hz. It will be the same for a given value of ωh_0 . For example, at 100mHz, 1 fA yields at $h_0 \sim 10^{-23}$, etc.

This looks encouraging, however, there is still a problem we will address next.

Inductance (Magnetic Energy)

$$E_{mag} \sim \mu_0 L I^2$$

$$E_{kin} = LS(n_S^A m_{eff}^A v_A^2 + n_S^B m_{eff}^B v_B^2)$$

if
$$m_{eff} \sim m_0$$
, $n_B < < n_A$, and $n_B \sim 10^{22} cm^{-3}$:

$$\frac{E_{mag}}{E_{kin}} \sim \mu_0 e^2 S \frac{n_S^B}{m_{eff}^B} \sim 10^{12}$$

How to neutralize magnetic field?

layers with A and B swapped

Currents move in opposite directions and cancel the magnetic field.
The number of spaghetti depends on geometry; large but realistic.

Readout

At I=1 fA and $R=5 \mu m$, $B=\mu_0 I/(2R) \sim 10^{-16} T$.

SQUID noise floor $3fT/Hz^{1/2}$: <u>10⁻¹⁷ T</u>/1 day of measurement. Freedom to exploit, say, 10 SQUIDs for different groups of layers, and/or get to weaker GW source detection, and/or reduce the observation time.

Noise Floor of the Detector

• Real noise floor of this antenna is due to normal resistance

$$\langle I_n, I_s \rangle = 4(k_B T / R_n) \delta v$$

- Two notes are important here:
- 1) at low *T* the normal fluid (and its influence) dies out exponentially;
- 2) bandwidth δv can be made narrow for periodic signals (large integration time).

Our estimates indicate that achievable noise floor is about $10 fA/Hz^{1/2}$, which inspires optimism.

Conclusions

•We elaborated a novel concept of the GW antenna. We see no showstopper for this concept and would welcome experts opinion on its viability. •Hopefully, in parallel to other large-scale efforts, such as the LIGO approach and LISA mission or NANO gravitational initiative, the suggested concept will become useful for one of the most challenging experiments – the detection of gravitational waves. •We cannot build it, but NASA can!